DeepSeek R1 論文

這篇論文介紹了 DeepSeek 團隊開發的兩個大型語言模型:DeepSeek-R1-Zero 和 DeepSeek-R1,它們的核心目標是提升 LLM 的推理能力。DeepSeek-R1-Zero 利用大規模強化學習 (RL) 從頭訓練,展現出令人驚豔的推理能力,儘管存在可讀性和語言混雜等問題。DeepSeek-R1 則在 DeepSeek-R1-Zero的基礎上,加入多階段訓練和冷啟動數據,進一步提升效能,其推理能力已能與 OpenAI 的 o1-1217 模型相媲美。論文也展示了將DeepSeek-R1 的推理能力蒸餾到較小模型的成果,並公開釋出多個不同規模的模型,供研究社群使用。 論文詳細闡述了訓練方法、評估結果以及一些失敗的嘗試,為LLM推理能力的提升提供了寶貴的經驗和見解。

總結模型能力對比
DeepSeek-R1 在函數調用、多回合任務、複雜角色扮演以及 JSON 輸出等方面的能力優於 DeepSeek-V3。

未來研究方向
解決語言混合問題,目標是在未來解決這一限制。
提升提示工程的穩健性,建議用戶直接描述問題並使用零樣本設置指定輸出格式以獲得最佳效果。
探索利用 CoT(Chain-of-Thought)來增強這些領域的任務能力。

推理過程的挑戰
儘管 MCTS 與預訓練價值模型結合使用可以提高推理效率,但通過自我搜索迭代提升模型效能仍然是重大挑戰。

冷啓動強化學習
在冷啓動階段,利用檢查點收集數據並結合監督微調(SFT)來自其他領域的數據,增強模型在寫作、角色扮演和其他通用任務中的能力。
針對 CoT 在語言混合方面的問題,引入了語言一致性獎勵,以提高模型的性能。


DeepSeek-R1 深度學習模型的線上教學

涵蓋 DeepSeek-R1及其衍生模型(例如R10、R1Z)的全面介紹,包含安裝設定、效能基準測試(與OpenAI模型相比),以及各種硬體環境下的除錯和最佳化方法。課程重點在於如何有效利用 DeepSeek-R1 進行文本生成和圖像處理等 AI 任務,並強調模型優化和降低運算成本的重要性,同時展望了AI模型未來的發展趨勢。

DeepSeek-R1 Crash Course

Cherry Studio 桌面 LLM 工具

Cherry Studio 是一款支持多個大語言模型(LLM)服務商的桌面客戶端,兼容 Windows、Mac 和 Linux 系統。支持主流 LLM 云服务:OpenAI、Gemini、Anthropic、硅基流动等。支持 Ollama 本地模型部署。内置 300+ 预配置 AI 助手。

MAC ImageWIN Image


DeepSeek Janus 多模態理解模型

Janus 系列多模態理解和生成模型。核心是三個模型:Janus、Janus-Pro 和 JanusFlow,它們都基於單一 Transformer 架構,實現了統一的多模態理解和生成。Janus-Pro 是 Janus 的進階版,透過優化訓練策略、擴展數據和提升模型規模,顯著提升了性能。JanusFlow 則結合了自迴歸語言模型和修正流模型,在效能和多功能性上取得平衡。該資源提供了模型下載、快速入門指南,以及使用 Python 進行多模態理解和圖像生成的程式碼範例,並提供了 Hugging Face 線上演示和本地 Gradio/FastAPI 演示的說明。 最後,還列出了相關論文的引用資訊。


Aider 終端編程工具

Aider 是一款命令列程式,能讓使用者透過大型語言模型 (LLM) 於終端進行程式碼配對編程。它直接在你的本地 Git 儲存庫中編輯程式碼,支援多種 LLM,例如 Claude 3.5 Sonnet、DeepSeek V3 和 GPT-4o 等,並能處理多種程式語言。 使用者可以提出新增功能、除錯、重構程式碼等需求,Aider 會自動編輯檔案並提交 Git 程式碼變更,大幅提升開發效率。此外,Aider 也提供圖像、網址輸入及語音輸入等功能,並在 SWE Bench 基準測試中獲得優異成績。 整體而言,Aider 旨在簡化程式碼開發流程,並提供一個直觀且高效的 AI 程式碼輔助工具。


Deepseek 的 5 個有趣實驗

作者進行五個關於 DeepSeek R1 以及其他模型(Claude 3.5、OpenAI)的實驗。
實驗一測試模型生成 3D 瀏覽器模擬程式碼的能力,結果 DeepSeek R1 成功完成;
實驗二結合 Claude 的功能與 DeepSeek R1 的推理機制,實現更複雜的資訊處理;
實驗三探討模型在一個數值猜測遊戲中的推理過程,展現了模型的思考步驟;
實驗四修改經典的河渡問題,測試模型是否能跳脫既有訓練資料的限制,DeepSeek R1和Claude成功解決,OpenAI則失敗;
實驗五則以情境題測試模型的連續推理能力,多個模型皆能得出正確結論。
整體而言,影片旨在展示大型語言模型的程式碼生成、工具使用、推理能力以及突破訓練資料限制的潛力,並分享作者對模型能力的觀察與思考。

I Did 5 DeepSeek-R1 Experiments | Better Than OpenAI o1?

DeepSeek R1 在 Pi 達每秒 200 個 token

開源人工智慧模型 DeepSeek R1 在樹莓派上以每秒 200 個 token 的速度運作,這是個突破性進展。重點在於此模型的效能即使在資源受限的樹莓派上也能達到令人驚訝的表現,並超越某些商業模型,例如OpenAI的某些版本。文章同時比較了不同硬體平台(如樹莓派、桌上型電腦、高效能GPU)運行此模型的效能差異,並探討了其在遊戲NPC應用上的潛力,強調其離線運作、低延遲以及可定制性等優點。


VideoLLaMA3 影片理解模型

一個以視覺為中心的多模態基礎模型,用於圖像和影片理解。其核心設計理念是優先利用高品質的圖像文字數據,而非大規模的影片文字數據進行訓練。模型採用四階段訓練流程:視覺對齊、視覺語言預訓練、多任務微調以及影片中心微調。此外,VideoLLaMA3 的架構設計能根據影像大小動態調整視覺 token 數量,並在影片處理中減少冗餘的視覺 token,以提升效率和準確性。最終,VideoLLaMA3 在圖像和影片理解基準測試中取得了令人信服的成果。(HuggingFace)


實作 Gemini 實時語音 RAG 助手。

利用 Gemini 2.0 的多模態即時 API 來建立一個實時的語音 RAG 助手。RAG,也就是檢索增強生成,肯定是語言模型中最有價值的增強之一。透過上下文感知的回答,它被證明是處理有關最新資訊的問題或任務的有效方法。

由於 Gemini 的多模態即時 API 裡面沒有內建的文件檢索介面,影片將展示如何建立一個自訂的流程,來接收用戶的語音,從提供的文件中檢索內容,然後讓Gemini 以語音回覆。

Talk to Your Documents: Create a Real-Time RAG Assistant with Gemini 2.0 Multimodal Live API

生物運算將應用於 A.I. 領域

瑞士 FinalSpark 實驗室利用腦部類器官 (brain organoids) 開發生物電腦的最新進展。這些微小的球狀物,由約一萬個從幹細胞培養而成的腦神經元組成,被放置在培養器中並連接到電極,以便進行通訊和訓練。此研究屬於生物運算 (bio-computing) 或稱濕件 (wetware) 的領域,目標是創造比現今電腦更節能且高效的運算系統,並可能徹底改變人工智慧系統。

Biocomputers made from human brain cells could run the AI systems of the future

Page 11 of 49
1 9 10 11 12 13 49