大規模多模態 MCD-rPPG 資料集旨在用於遠程光電容積脈搏波 (rPPG) 和基於視訊的健康生物標記估計。此資料集包含 600 名受試者在靜止和運動後狀態下,從三個攝影機以不同角度拍攝的同步視訊記錄、PPG 和 ECG 訊號以及擴展的健康指標(動脈血壓、血氧飽和度、壓力水平等)。
我們還提供了一個高效的多任務神經網路模型,即使在 CPU 上也可以即時估計臉部視訊中的脈搏波訊號和其他生物標記。(Paper)

你是否曾因圖像模糊而感到困擾?想放大照片卻又擔心細節盡失?在數位時代,清晰的視覺體驗至關重要。今天,我們將深入探討一項令人興奮的技術——Vision-SR1,一個基於視覺空間推理網路的圖像超解析度解決方案,它有望徹底改變我們處理低解析度圖像的方式。
圖像超解析度(Super-Resolution, SR)的目標是從低解析度(Low-Resolution, LR)圖像中重建出高解析度(High-Resolution, HR)圖像。這項技術在監控、醫學影像、娛樂等多個領域都有廣泛應用。然而,如何有效恢復細節並生成逼真的高解析度圖像,一直是研究人員面臨的挑戰。Vision-SR1 正是為了解決這一挑戰而誕生的創新方法。

Vision-SR1 項目,全名為「Visual-Spatial Reasoning Network for Image Super-Resolution」(用於圖像超解析度的視覺空間推理網路),其核心在於引入了一個獨特的視覺空間推理機制。這意味著它不僅僅是簡單地放大圖像,而是能夠理解圖像中的空間關係和視覺語義,進而更智慧地推斷和重建缺失的細節。透過這種方式,Vision-SR1 能夠生成更為精確和自然的高解析度圖像,顯著提升視覺品質.。
ZARA 是一個用於人類身體活動識別 (HAR Human Activity Recognition) 的新型框架,它利用穿戴式感測器的原始運動數據。傳統的 HAR 系統通常需要針對特定任務的深度學習模型進行昂貴的重新訓練,而且在引入新感測器或未見活動時,其泛化能力和零樣本識別能力有限,同時也缺乏可解釋性。
ZARA 透過結合多感測器檢索增強生成 (RAG)、自動化的成對領域知識注入和層次代理式大型語言模型 (LLM) 推理來克服這些限制。ZARA 不需額外訓練,就能在多種數據集和感測器配置上實現零樣本分類,其性能超越現有方法,並可提供驗證。研究強調了其檢索、知識庫和代理模組在提升準確性和支援決策方面的關鍵作用。

LIA-X (Interpretable Latent Portrait Animator)強調其控制性,適合 AI 研究者和內容創作者使用,旨在將臉部動態從驅動影片遷移到指定的頭像,並實現精細控制。
LIA-X 的可解釋性與細粒度控制能力,使其支援多種實際應用:
LongSplat 是個用於從隨機拍攝的長影片中生成新穎視角的三維高斯噴灑(3D Gaussian Splatting)框架。它能夠解決從隨機拍攝、具有不規則攝影機運動和未知攝影機姿態的長影片中進行新視角合成的關鍵挑戰。
Qwen-Image-Edit 是 Qwen-Image 的圖像編輯版本,基於20B模型進一步訓練,支持精准文字編輯和語義/外觀雙重編輯能力。它具備多項關鍵功能與技術優勢:
用於音訊驅動頭像視訊產生的擴散模型難以合成具有自然音訊同步和身份一致性的長視訊。基於 Wan2.1-1.3B 的 StableAvatar 音訊驅動的頭像視訊效果,是首個端到端視訊擴散變換器,無需後製即可合成無限長的高品質視訊。

FantasyPortrait 支援使用多個單人影片或單一多人影片驅動多個角色,產生細緻的表情和逼真的肖像動畫。
從靜態圖像中製作富有表現力的臉部動畫是一項極具挑戰性的任務。現有方法缺乏對多角色動畫的支持,因為不同個體的驅動特徵經常相互幹擾,使任務變得複雜。FantasyPortrait 提出了 Multi-Expr 資料集和 ExprBench,它們是專門為訓練和評估多角色肖像動畫而設計的資料集和基準。大量實驗表明,FantasyPortrait 在定量指標和定性評估方面均顯著超越了最先進的方法,尤其是在具有挑戰性的交叉重現和多角色情境中表現出色。
Chrome MCP 伺服器是一款基於 Chrome 擴充功能的模型上下文協定 (MCP) 伺服器,它將您的 Chrome 瀏覽器功能開放給 Claude 等 AI 助手,從而實現複雜的瀏覽器自動化、內容分析和語義搜尋。與傳統的瀏覽器自動化工具(例如 Playwright)不同,Chrome MCP 伺服器直接使用您日常使用的 Chrome 瀏覽器,利用現有的使用者習慣、配置和登入狀態,讓各種大型模型或聊天機器人控制您的瀏覽器,真正成為您的日常助理。