Omni-Effects 是一套針對視覺特效(VFX)生成的統一框架,主打多效果合成和空間可控性。這項技術突破了以往僅能針對單一特效單獨訓練(如 per-effect LoRA)的限制,可同時在指定區域生成多種特效,極大拓展了在影視製作及創意領域的應用可能性。
框架的核心包含兩項關鍵創新:(1) 基於 LoRA 的混合專家 (LoRA-MoE),將多種效果整合到統一模型中,同時有效地減少跨任務幹擾。 (2) 空間感知提示 (SAP)將空間遮罩資訊合併到文字標記中,從而實現精確的空間控制。

Omni-Effects 是一套針對視覺特效(VFX)生成的統一框架,主打多效果合成和空間可控性。這項技術突破了以往僅能針對單一特效單獨訓練(如 per-effect LoRA)的限制,可同時在指定區域生成多種特效,極大拓展了在影視製作及創意領域的應用可能性。
框架的核心包含兩項關鍵創新:(1) 基於 LoRA 的混合專家 (LoRA-MoE),將多種效果整合到統一模型中,同時有效地減少跨任務幹擾。 (2) 空間感知提示 (SAP)將空間遮罩資訊合併到文字標記中,從而實現精確的空間控制。
相較於最先進的 360 度影片生成方法,Matrix-3D 在全景影片的視覺品質與合理幾何結構上更優越。同時,在視覺品質與相機可控性上,也超越先前的相機控制影片生成方法。廣泛實驗證明其在全景影片生成與 3D 世界生成上的最先進效能。香港科技大學(廣州分校)有份參預!
影片主要介紹如何使用 Ostris AI 開發的 AI Toolkit,在僅有 24 GB VRAM 的 RTX 4090 或 3090 GPU 上,訓練一個基於 Qwen-Image 模型的 LoRA(Low-Rank Adaptation)風格模型。Qwen-Image 是一個 20 億參數的巨型模型,通常需要更高規格的硬體(如 32 GB VRAM 的 RTX 5090),但作者透過創新技術(如量化與 Accuracy Recovery Adapter)實現了在消費級 GPU 上的訓練。影片強調這是對先前影片的延續,先前影片曾在 5090 上使用 6-bit 量化訓練角色 LoRA,而本次聚焦於更常見的 24 GB VRAM 硬體。
可控的超長影片生成是一項基礎但具有挑戰性的任務,因為現有的方法雖然對短片段有效,但由於時間不一致和視覺品質下降等問題而難以擴展。
LongVie 的核心設計可確保時間一致性:
1)統一雜訊初始化策略,在各個片段之間保持一致的生成;
2)全域控制訊號歸一化,可在整個視訊的控制空間中強制對齊。為了減輕視覺品質下降,LongVie 採用密集(例如深度圖)和稀疏(例如關鍵點)控制訊號,並輔以一種退化感知訓練策略,可以自適應地平衡模態貢獻以保持視覺品質。
這個教程介紹如何使用 Flux Kontext 和 VACE 第一幀/最後一幀在 ComfyUI 中創建基於關鍵幀的高級動畫!Kontext 瞭解完整的圖像上下文,而 VACE 允許在起始幀和完全不同的最終姿勢或角色之間無縫移動。無論您是將一個人變形為另一個人,還是為角色的姿勢製作跨時間的動畫,這都是 AI 視頻生成的一個突破。
由音訊驅動的人體動畫技術,以面部動作同步且畫面吸睛的能力,已經有很顯著的進步。然而,現有的方法大多專注於單人動畫,難以處理多路音訊輸入,也因此常發生音訊與人物無法正確配對的問題。
MultiTalk 為了克服這些挑戰,提出了一項新任務:多人對話影片生成,並引入了一個名為 MultiTalk 的新框架。這個框架專為解決多人生成過程中的難題而設計。具體來說,在處理音訊輸入時,我們研究了多種方案,並提出了一種**標籤旋轉位置嵌入(L-RoPE)**的方法,來解決音訊與人物配對不正確的問題。香港科技大學數學與數學研究中心及電子與電腦工程系有份參與。
NVIDIA 與 Black Forest Labs 合作,使用
NVIDIA TensorRT軟體開發套件和量化技術針對
NVIDIA RTX GPU 優化 FLUX.1 Kontext [dev],
從而以更低的 VRAM 要求提供更快的推理速度。
LTX-Video 是第一個基於 DiT 的視訊生成模型,可以即時產生高品質的視訊。它可以以 1216×704 的分辨率生成 30 FPS 的視頻,比觀看這些視頻的速度還快。該模型在多樣化影片的大規模資料集上進行訓練,可以產生具有逼真和多樣化內容的高解析度影片。模型支援文字轉圖像、圖像轉影片、基於關鍵影格的動畫、影片擴充(正向和反向)、影片轉影片以及這些功能的任意組合。
FramePack 是一種新的視頻擴散設計,用壓縮上下文令工作量不會隨著影片的長度而增加,只需一張圖片,就可以令你的 6GB vRAM 的電腦透過 13B 模型生成每秒 30 格影片的 60 秒影片。而用 RTX 4090 的話,最快速度為每格 1.5 秒。
作者 Lvmin Zhang
LHM (Large Animatable Human Reconstruction Model) 是一個高效及高質量的 3D 人體重建方案模型,能夠在幾秒鐘內生成影片。模型利用了多模態的 Transformer 架構,以注意力機制,對人體特徵和影像特徵進行編碼,能夠詳細保存服裝的幾何形狀和紋理。為了進一步增強細節,LHM 提出了一種針對頭部特徵的金字塔型編碼方案,能夠生成頭部區域的多種特徵。(阿里巴巴)