NVSpeech 用於處理副語言聲音(paralinguistic vocalizations),包括非語言聲音(如笑聲、呼吸)和詞彙化插入語(如「uhm」、「oh」)。這些元素在自然對話中至關重要,能傳達情感、意圖和互動線索,但傳統自動語音辨識(ASR)和文字轉語音(TTS)系統往往忽略它們。

NVSpeech 用於處理副語言聲音(paralinguistic vocalizations),包括非語言聲音(如笑聲、呼吸)和詞彙化插入語(如「uhm」、「oh」)。這些元素在自然對話中至關重要,能傳達情感、意圖和互動線索,但傳統自動語音辨識(ASR)和文字轉語音(TTS)系統往往忽略它們。
由音訊驅動的人體動畫技術,以面部動作同步且畫面吸睛的能力,已經有很顯著的進步。然而,現有的方法大多專注於單人動畫,難以處理多路音訊輸入,也因此常發生音訊與人物無法正確配對的問題。
MultiTalk 為了克服這些挑戰,提出了一項新任務:多人對話影片生成,並引入了一個名為 MultiTalk 的新框架。這個框架專為解決多人生成過程中的難題而設計。具體來說,在處理音訊輸入時,我們研究了多種方案,並提出了一種**標籤旋轉位置嵌入(L-RoPE)**的方法,來解決音訊與人物配對不正確的問題。香港科技大學數學與數學研究中心及電子與電腦工程系有份參與。