Ovi 使用了專屬預訓練 5B 音頻分支,架構設計類似 WAN 2.2 5B,同時提供了 1B 融合分支,支持純文本或文本+圖片輸入,自動生成視頻、對嘴音頻,以及匹配場景的背景音效和音樂。
Paper2Video 論文自動生成視頻系統
Paper2Video 能從輸入的論文(LaTeX源碼)、一張圖片和一段音頻,生成完整的學術報告視頻。集成了幻燈片生成、字幕生成、游標定位、語音合成、講者視頻渲染等多模態子模塊,實現一條龍的演示視頻製作流程。支持並行處理以提升視頻生成效率,推薦GPU為NVIDIA A6000(48G顯存)及以上。
需要設定 GPT-4.1 或 Gemini2.5-Pro 等大型語言模型 API Key,支持本地 Qwen 模型。
HuMo:文本、圖片和音訊三種輸入
LIA-X 肖像動畫器
LIA-X (Interpretable Latent Portrait Animator)強調其控制性,適合 AI 研究者和內容創作者使用,旨在將臉部動態從驅動影片遷移到指定的頭像,並實現精細控制。
LIA-X 功能列表
LIA-X 的可解釋性與細粒度控制能力,使其支援多種實際應用:
- 圖像動畫 (Image Animation):能夠將驅動影片的臉部動態轉移到來源肖像上,並可透過控制面板進行編輯。使用者可以上傳來源圖像和驅動影片,然後使用控制面板編輯來源圖像,並生成動畫影片。
- 圖像編輯 (Image Editing):允許使用者上傳來源圖像,並透過控制面板對其進行精確編輯。這包括對臉部細節的控制,例如偏航 (yaw)、噘嘴 (pout)、閉眼和眼球移動。
- 影片編輯 (Video Editing):支援使用者上傳影片,並透過控制面板編輯影片的第一幀,以產生新的編輯後影片。同樣支援細粒度控制,例如頭部偏航和閉眼。
- 線性操控 (Linear Manipulation):可以進行諸如偏航 (yaw)、俯仰 (pitch)、眼睛閉合與張開,以及眼球移動等臉部動態的線性控制。
- 3D 感知肖像影片操控 (3D-aware Portrait Video Manipulation):這是一個更進階的應用,LIA-X 的可控性質支援此類應用。
- 動畫化個人資料 (Animating Your Own Data):支援使用者自行準備圖像和影片資料(例如裁剪),然後進行動畫化處理。
- 細粒度、使用者引導的圖像和影片編輯:作為其可解釋和可控性質的直接結果,LIA-X 能夠實現這種精確的編輯。
OmniTry 無需 Mask 的虛擬試穿技術
StableAvatar:無限長音訊驅動的頭像影片生成
用於音訊驅動頭像視訊產生的擴散模型難以合成具有自然音訊同步和身份一致性的長視訊。基於 Wan2.1-1.3B 的 StableAvatar 音訊驅動的頭像視訊效果,是首個端到端視訊擴散變換器,無需後製即可合成無限長的高品質視訊。

FantasyPortrait
FantasyPortrait 支援使用多個單人影片或單一多人影片驅動多個角色,產生細緻的表情和逼真的肖像動畫。
從靜態圖像中製作富有表現力的臉部動畫是一項極具挑戰性的任務。現有方法缺乏對多角色動畫的支持,因為不同個體的驅動特徵經常相互幹擾,使任務變得複雜。FantasyPortrait 提出了 Multi-Expr 資料集和 ExprBench,它們是專門為訓練和評估多角色肖像動畫而設計的資料集和基準。大量實驗表明,FantasyPortrait 在定量指標和定性評估方面均顯著超越了最先進的方法,尤其是在具有挑戰性的交叉重現和多角色情境中表現出色。
VACE First Last + Kontext ComfyUI 教學
這個教程介紹如何使用 Flux Kontext 和 VACE 第一幀/最後一幀在 ComfyUI 中創建基於關鍵幀的高級動畫!Kontext 瞭解完整的圖像上下文,而 VACE 允許在起始幀和完全不同的最終姿勢或角色之間無縫移動。無論您是將一個人變形為另一個人,還是為角色的姿勢製作跨時間的動畫,這都是 AI 視頻生成的一個突破。
MultiTalk 音訊驅動生成多人對話影片
由音訊驅動的人體動畫技術,以面部動作同步且畫面吸睛的能力,已經有很顯著的進步。然而,現有的方法大多專注於單人動畫,難以處理多路音訊輸入,也因此常發生音訊與人物無法正確配對的問題。
MultiTalk 為了克服這些挑戰,提出了一項新任務:多人對話影片生成,並引入了一個名為 MultiTalk 的新框架。這個框架專為解決多人生成過程中的難題而設計。具體來說,在處理音訊輸入時,我們研究了多種方案,並提出了一種**標籤旋轉位置嵌入(L-RoPE)**的方法,來解決音訊與人物配對不正確的問題。香港科技大學數學與數學研究中心及電子與電腦工程系有份參與。
OmniAvatar 數字人完整解決方案
OmniAvatar 是一種創新的音訊驅動全身視訊生成模型,它透過提高唇形同步精度和自然動作來增強人體動畫。 OmniAvatar 引入了一種逐像素多層音訊嵌入策略,可更好地捕捉潛在空間中的音訊特徵,從而增強不同場景下的唇形同步效果。為了在有效融合音訊特徵的同時保留基礎模型的提示驅動控制能力,我們採用了基於 LoRA 的訓練方法。大量實驗表明,OmniAvatar 在臉部和半身視訊生成方面均超越現有模型,能夠提供基於文字的精準控制,用於創建播客、人機互動、動態場景和歌唱等各個領域的影片。

