傳統的卡通/動漫製作耗時耗力,需要技藝精湛的藝術家進行關鍵影格、中間畫和上色。 ToonComposer 利用生成式 AI 簡化了這個流程,將數小時的中間畫和上色手動工作簡化為一個無縫銜接的流程。
FantasyPortrait
FantasyPortrait 支援使用多個單人影片或單一多人影片驅動多個角色,產生細緻的表情和逼真的肖像動畫。
從靜態圖像中製作富有表現力的臉部動畫是一項極具挑戰性的任務。現有方法缺乏對多角色動畫的支持,因為不同個體的驅動特徵經常相互幹擾,使任務變得複雜。FantasyPortrait 提出了 Multi-Expr 資料集和 ExprBench,它們是專門為訓練和評估多角色肖像動畫而設計的資料集和基準。大量實驗表明,FantasyPortrait 在定量指標和定性評估方面均顯著超越了最先進的方法,尤其是在具有挑戰性的交叉重現和多角色情境中表現出色。
Story2Board:無需訓練且有表現力的故事板
Story2Board 是個無需訓練的框架,用於從自然語言中生成富有表現力的故事板。目標是將敘事呈現為一系列連貫的故事板面板——每個面板描繪不同的場景,同時保留主要角色的身份和外觀。

Omni-Effects:統一可控的視覺效果
Omni-Effects 是一套針對視覺特效(VFX)生成的統一框架,主打多效果合成和空間可控性。這項技術突破了以往僅能針對單一特效單獨訓練(如 per-effect LoRA)的限制,可同時在指定區域生成多種特效,極大拓展了在影視製作及創意領域的應用可能性。
框架的核心包含兩項關鍵創新:(1) 基於 LoRA 的混合專家 (LoRA-MoE),將多種效果整合到統一模型中,同時有效地減少跨任務幹擾。 (2) 空間感知提示 (SAP)將空間遮罩資訊合併到文字標記中,從而實現精確的空間控制。

Qwen-Image 的 LoRA 訓練
影片主要介紹如何使用 Ostris AI 開發的 AI Toolkit,在僅有 24 GB VRAM 的 RTX 4090 或 3090 GPU 上,訓練一個基於 Qwen-Image 模型的 LoRA(Low-Rank Adaptation)風格模型。Qwen-Image 是一個 20 億參數的巨型模型,通常需要更高規格的硬體(如 32 GB VRAM 的 RTX 5090),但作者透過創新技術(如量化與 Accuracy Recovery Adapter)實現了在消費級 GPU 上的訓練。影片強調這是對先前影片的延續,先前影片曾在 5090 上使用 6-bit 量化訓練角色 LoRA,而本次聚焦於更常見的 24 GB VRAM 硬體。
n8n 與 ComfyUI 自動化生成本地 AI 視頻
教程展示了AI工具鏈整合的未來趨勢,將碎片化任務轉爲端到端自動化系統,適合想提升創作效率的技術型用戶。若需實作細節,可參考影片中的Docker指令與節點配置截圖。
100+ 看來與電影一模一樣的 AI 視頻
WAN 2.1 VACE 模型的原生支援
1.3B 模型採用 Creative Commons 非商業授權,14B 模型則為 Apache 2 授權。
影片詳細展示如何在ComfyUI中下載、載入不同模型,根據顯存選擇合適的模型版本,並調整參數以優化生成效果(如步數、強度等)
- ComfyUI現在原生支援WAN 2.1 VACE模型,提供1.3B(適合低顯存顯卡)和14B(適合高顯存顯卡)兩種模型。
- 多種 AI 影片生成工作流程:
- 文字轉影片(Text-to-Video)
- 圖像轉影片(Image-to-Video)
- 影片控制(Video Control)
- 影片外延(Video Outpainting)
- 首尾影格生成(First Frame/Last Frame)
LTX-Video 0.96
LTX-Video 是第一個基於 DiT 的視訊生成模型,可以即時產生高品質的視訊。它可以以 1216×704 的分辨率生成 30 FPS 的視頻,比觀看這些視頻的速度還快。該模型在多樣化影片的大規模資料集上進行訓練,可以產生具有逼真和多樣化內容的高解析度影片。模型支援文字轉圖像、圖像轉影片、基於關鍵影格的動畫、影片擴充(正向和反向)、影片轉影片以及這些功能的任意組合。




FramePack 6Gb vRAM 出 60 秒影片
FramePack 是一種新的視頻擴散設計,用壓縮上下文令工作量不會隨著影片的長度而增加,只需一張圖片,就可以令你的 6GB vRAM 的電腦透過 13B 模型生成每秒 30 格影片的 60 秒影片。而用 RTX 4090 的話,最快速度為每格 1.5 秒。
作者 Lvmin Zhang