InteractAvatar 互動數字人

InteractAvatar 能從一張靜態參考圖生成「人與物體互動」的視頻,同時保持音畫同步(lip‑sync + co‑speech gestures)。同時能夠執行基於場景的人機互動 (GHOI)。與以往僅限於簡單手勢的方法不同,我們的模型可以從靜態參考圖像中感知環境,並產生複雜的、文本引導的與物體的交互,同時保持高保真度的唇部同步。

雙流 Diffusion Transformer(DiT)架構:一個分支做「感知與互動規劃」(Perception and Interaction Module, PIM),負責理解圖片裡的物體位置與關係,並生成對齊文字指令的動作序列。另一個分支做「音訊‑互動感知生成」(Audio‑Interaction Aware Generation Module, AIM),把動作與語音融合成高品質視頻。

Categories: 騰訊, 影像模型, 影像處理, 數字人, 視頻模型, 開源

LongVie 2 – 可控超長影片生成

可控的超長影片生成是一項基礎但具有挑戰性的任務,因為現有的方法雖然對短片段有效,但由於時間不一致和視覺品質下降等問題而難以擴展。

LongVie 2 的核心設計可確保時間一致性:
1)統一雜訊初始化策略,在各個片段之間保持一致的生成;
2)全域控制訊號歸一化,可在整個視訊的控制空間中強制對齊。為了減輕視覺品質下降,LongVie 2 採用密集(例如深度圖)和稀疏(例如關鍵點)控制訊號,並輔以一種退化感知訓練策略,可以自適應地平衡模態貢獻以保持視覺品質。

LongVie 2 : Multimodal Controllable Ultra-Long Video World Model
Categories: NVIDIA, 多模態模型, 影像模型, 模型, 視頻模型, 開源

DreamActor-M2 基於時空上下文動畫

DreamActor-M2 是一個通用的角色圖像動畫框架,它將運動條件化重新定義為時空上下文學習任務。我們的設計利用了視訊基礎模型固有的生成先驗訊息,同時實現了從原始視訊直接進行無姿態、端到端運動遷移的關鍵演進。這種範式消除了明確姿態估計的需求,使得
DreamActor-M2 能夠在各種複雜場景中實現卓越的泛化能力和高保真度的結果。

Categories: 字節跳動, 影像模型, 影像處理, 視頻模型, 開源

RBench and RoVid-X 機器人影片生成

RoVid‑X 號稱是目前最大規模的機器人影片生成開源資料集,約 400 萬 clips,覆蓋 1300+ skills / tasks,解析度達 720p,同時支援多樣機器人形態與多樣文字描述。RoVid‑X 主要解決現有 SOTA video diffusion / transformer 模型,在一般影片生成指標上不錯,但面對需要「因果一致、物理連貫」的機器人操作影片時,常出現物理錯誤、目標物體消失/瞬移、關節極限違反等問題。

RBench 旨在評估面向機器人的視訊生成的表現。它評估任務層面的正確性和視覺保真度。 雖然RBench為識別這些缺陷提供了必要的視角,但要實現物理上的真實性,還需要超越評估層面,解決高品質訓練資料嚴重短缺的問題。基於這些,他們引入了一個改進的四階段數據管道,由此誕生了 RoVid-X——迄今為止最大的開源機器人視頻生成數據集,涵蓋數千個任務,並富含全面的物理屬性標註。這項協同的評估和資料生態系統為視訊模型的嚴格評估和可擴展訓練奠定了堅實的基礎,加速了具身人工智慧向通用智慧的演進。

Categories: 影像模型, 視頻模型, 開源, Robotic


VINO 多模態模型對齊提示生成圖像與影片

VINO 是個統一的視覺生成工具,能同時處理圖像和影片的創作與編輯,無需針對每種任務去找不同的模型。它的核心架構是把視覺語言模型和多模態擴散轉換器(MMDiT)結合起來,讓文字、參考圖片或影片都能以同一套條件流動的方式被傳遞給擴散過程。

這裡的「可學習查詢 token」扮演的角色是把使用者的簡短指令轉化成模型能理解的細節向量,並在訓練時一起調整,讓指令更精確、模型更穩定。另一個關鍵在於把參考影像或影片所產生的特徵與它在 latent 空間的對應向量用同樣的開始與結束標記包起來,這樣模型就能在語意層面和潛在層面都把同一個參考資源針對地辨識出來,減少身份混淆或屬性遺漏的問題。

Categories: 影像模型, 影像處理, 視覺模型, 視頻模型, 開源


PlenopticDreamer – NVidia 解決影片一致性

PlenopticDreamer 主要解決「鏡頭控制生成影片」的不一致問題。這是一個能讓 AI「像無人機一樣繞著物體飛」生成影片的技術。它可以應用在自駕車的模擬環境、機器人的視覺訓練,以及好萊塢等級的虛擬拍攝。

1.  Robotics(機器人):

    *   情境模擬: 機器人需要理解物體在不同角度下的樣貌。這個技術可以根據單一攝影機的畫面,生成該物體在其他視角的影像,幫助機器人進行視覺導航或物體抓取的訓練。

    *   模擬數據生成: 為機器視覺系統生成更多樣化的訓練數據。

2.  Self-Driving(自駕車):

    *   場景理解: 自駕車通常有多個鏡頭。這個技術可以補足盲區,或者將一個鏡頭的畫面轉換成其他鏡頭的視角,幫助車輛更全面地感知周圍環境。

    *   未來幀預測: 預測道路上物體在下一秒鐘會出現在哪個位置(從不同角度)。

3.  影視製作與 AR/VR:

    *   新視角補全: 如果拍攝時漏掉了某個角度,可以利用這個技術「憑空生成」該角度的連續影片。

    *   重定向(Re-direction): 可以將拍好的影片,根據新的鏡頭軌跡重新渲染(Re-rendering),讓同一段故事可以從不同角度重新看一遍。

Categories: 香港中文大學, NVIDIA, 影像模型, 影像處理, 視覺模型, 視頻模型, 開源

Gen3R 影片資訊直接生成 3D 

Gen3R 是一個將基礎重建模型與視訊擴散模型結合的框架,目標是從單張或多張圖片生成包含 RGB 影片與幾何資訊的 3D 場景。如果你對於用影片資訊直接生成 3D 幾何感興趣,這是目前最接近「一鍵產出完整場景」的方案之一。

核心流程是:先把 VGGT 重建模型的 token 包成幾個幾何潛在變數,再用一個 adapter 把這些潛在值推向影片擴散模型的外觀潛在;兩種潛在同時生成,互相對齊後就能一次產出 RGB 影片 plus 完整的 3D 幾何資訊(相機姿態、深度圖、全局點雲)。

實驗顯示在單張或多張圖像條件下都能得到最佳的 3D 場景生成結果,而且透過擴散先驗提升了重建的穩定性。整體上是把重建跟生成模型「緊密」捆綁在一起,而不是分開處理。  

Gen3R: 3D Scene Generation Meets Feed-Forward Reconstruction
Categories: 字節跳動, 3D, 影像模型, 影像處理, 開源

ProEdit:開源圖片及影片編輯

ProEdit 透過 KV-mix 在注意力層融合源/目標特徵,及 Latents-Shift 擾動潛在空間,實現高保真編輯。 支援 FLUX、HunyuanVideo 等模型,同時亦整合 Qwen3-8B 解析自然語言指令。

ProEdit 解決傳統反轉編輯過度依賴源圖的問題,能準確變換主體屬性如姿態、數量、顏色,同時保持背景一致。 適用於圖像替換(如老虎變貓、襯衫變毛衣)與影片動態編輯(如紅車變黑車、鹿變牛)。適合 AI 內容創作者、影片後製,plug-and-play 相容 RF-Solver 等工具,在多項基準測試達 SOTA 效能。

ProEdit: Inversion-based Editing From Prompts Done Right

Categories: 香港大學, 香港中文大學, 影像模型, 影像處理, 視頻模型

Page 1 of 6
1 2 3 6