Omni-Effects:統一可控的視覺效果

Omni-Effects 是一套針對視覺特效(VFX)生成的統一框架,主打多效果合成和空間可控性。這項技術突破了以往僅能針對單一特效單獨訓練(如 per-effect LoRA)的限制,可同時在指定區域生成多種特效,極大拓展了在影視製作及創意領域的應用可能性。

框架的核心包含兩項關鍵創新:(1) 基於 LoRA 的混合專家 (LoRA-MoE),將多種效果整合到統一模型中,同時有效地減少跨任務幹擾。 (2) 空間感知提示 (SAP)將空間遮罩資訊合併到文字標記中,從而實現精確的空間控制。

Categories: 視頻模型, 開源, 影像模型, 影像處理

Qwen-Image 的 LoRA 訓練

Train a Qwen-Image LoRA on 24GB VRAM With AI Toolkit

影片主要介紹如何使用 Ostris AI 開發的 AI Toolkit,在僅有 24 GB VRAM 的 RTX 4090 或 3090 GPU 上,訓練一個基於 Qwen-Image 模型的 LoRA(Low-Rank Adaptation)風格模型。Qwen-Image 是一個 20 億參數的巨型模型,通常需要更高規格的硬體(如 32 GB VRAM 的 RTX 5090),但作者透過創新技術(如量化與 Accuracy Recovery Adapter)實現了在消費級 GPU 上的訓練。影片強調這是對先前影片的延續,先前影片曾在 5090 上使用 6-bit 量化訓練角色 LoRA,而本次聚焦於更常見的 24 GB VRAM 硬體。

Categories: 視頻模型, 開源, 影像模型, 影像處理, 多模態模型, 教學, 模型, 模型訓練

LongVie – 可控超長影片生成

可控的超長影片生成是一項基礎但具有挑戰性的任務,因為現有的方法雖然對短片段有效,但由於時間不一致和視覺品質下降等問題而難以擴展。

LongVie 的核心設計可確保時間一致性:
1)統一雜訊初始化策略,在各個片段之間保持一致的生成;
2)全域控制訊號歸一化,可在整個視訊的控制空間中強制對齊。為了減輕視覺品質下降,LongVie 採用密集(例如深度圖)和稀疏(例如關鍵點)控制訊號,並輔以一種退化感知訓練策略,可以自適應地平衡模態貢獻以保持視覺品質。

Categories: 視頻模型, 開源, 影像模型, 多模態模型, 模型

VACE First Last + Kontext ComfyUI 教學

這個教程介紹如何使用 Flux Kontext 和 VACE 第一幀/最後一幀在 ComfyUI 中創建基於關鍵幀的高級動畫!Kontext 瞭解完整的圖像上下文,而 VACE 允許在起始幀和完全不同的最終姿勢或角色之間無縫移動。無論您是將一個人變形為另一個人,還是為角色的姿勢製作跨時間的動畫,這都是 AI 視頻生成的一個突破。

VACE First Last + Kontext: KeyFrame Animation When You Only Have One Frame! ComfyUI Tutorial & Demos
Categories: 視頻模型, ComfyUI, 數字人, 開源, 影像模型

MultiTalk 音訊驅動生成多人對話影片

由音訊驅動的人體動畫技術,以面部動作同步且畫面吸睛的能力,已經有很顯著的進步。然而,現有的方法大多專注於單人動畫,難以處理多路音訊輸入,也因此常發生音訊與人物無法正確配對的問題。

MultiTalk 為了克服這些挑戰,提出了一項新任務:多人對話影片生成,並引入了一個名為 MultiTalk 的新框架。這個框架專為解決多人生成過程中的難題而設計。具體來說,在處理音訊輸入時,我們研究了多種方案,並提出了一種**標籤旋轉位置嵌入(L-RoPE)**的方法,來解決音訊與人物配對不正確的問題。香港科技大學數學與數學研究中心及電子與電腦工程系有份參與。

Categories: 視頻模型, 香港科技大學, 數字人, 開源, 聲效, 影像模型, 模型


MTVCrafter 數字人動畫

MTVCrafter 是專門用來製作高品質的數字人動畫。現有方法依賴二維渲染的姿態影像進行運動引導,這限制了其泛化能力並丟棄了重要的三維資訊。MTVCrafter 有兩個厲害的設計:第一個是 4DMoT(4D 運動標記器),能夠將三維動作轉成 4D 運動標記,比二維圖片更精準地捕捉時間和空間的細節!第二個是 MV-DiT(運動感知影片 DiT),用了一個特別的 4D 位置編碼技術,讓動畫在複雜的三維世界裡也能流暢又生動。實驗結果的 FID-VID 分數達到 6.98,比第二名強了 65%,不管是單人、多人、全身或半身的角色,還是各種風格和場景,它都能輕鬆搞定!

Categories: 數字人, 開源, 影像模型


WAN 2.1 VACE 模型的原生支援

1.3B 模型採用 Creative Commons 非商業授權,14B 模型則為 Apache 2 授權。

影片詳細展示如何在ComfyUI中下載、載入不同模型,根據顯存選擇合適的模型版本,並調整參數以優化生成效果(如步數、強度等)

  • ComfyUI現在原生支援WAN 2.1 VACE模型,提供1.3B(適合低顯存顯卡)和14B(適合高顯存顯卡)兩種模型。
  • 多種 AI 影片生成工作流程
    • 文字轉影片(Text-to-Video)
    • 圖像轉影片(Image-to-Video)
    • 影片控制(Video Control)
    • 影片外延(Video Outpainting)
    • 首尾影格生成(First Frame/Last Frame)
Amazing AI Video Natively in ComfyUI - An Introduction to WAN VACE
Categories: ComfyUI, 數字人, 開源, 影像模型, 影像處理, txt2img

Page 1 of 2
1 2