LTX-Video 是第一個基於 DiT 的視訊生成模型,可以即時產生高品質的視訊。它可以以 1216×704 的分辨率生成 30 FPS 的視頻,比觀看這些視頻的速度還快。該模型在多樣化影片的大規模資料集上進行訓練,可以產生具有逼真和多樣化內容的高解析度影片。模型支援文字轉圖像、圖像轉影片、基於關鍵影格的動畫、影片擴充(正向和反向)、影片轉影片以及這些功能的任意組合。




LTX-Video 是第一個基於 DiT 的視訊生成模型,可以即時產生高品質的視訊。它可以以 1216×704 的分辨率生成 30 FPS 的視頻,比觀看這些視頻的速度還快。該模型在多樣化影片的大規模資料集上進行訓練,可以產生具有逼真和多樣化內容的高解析度影片。模型支援文字轉圖像、圖像轉影片、基於關鍵影格的動畫、影片擴充(正向和反向)、影片轉影片以及這些功能的任意組合。





Skywork 是一個創新的研究團隊,致力於推動法學碩士和多模式理解。它們的使命是透過視覺和語言開發並實現無縫互動的尖端模型和資料集來突破人工智慧的界限。模型支援文字到視訊(T2V) 和圖像到視訊(I2V) 任務,並且可以在同步和非同步模式下進行推理。
影片長度限制的突破:雖然像 LTXV 和 HuanYun 等模型在速度或品質方面表現出色,但它們通常限制生成約 5 到 10 秒的短片。Frame pack 可以生成高達 60 秒的高品質影片,但 60 秒是其最大長度。Skyreels V2 透過其稱為「擴散強制 (diffusion forcing)」的技術,可以讓您生成長達 60 秒甚至可能更長的影片。技術上,擴散強制模型可以透過不斷訓練一個擴散強制取樣器並在最後組合每個結果來無限延長影片長度。
MiniMax 模型上下文協定 (MCP) 伺服器,可與強大的文字轉語音和視訊/圖像生成 API 進行互動。此伺服器允許 MCP 用戶端(如 Claude Desktop 、 Cursor 、 Windsurf 、 OpenAI Agents 等)產生語音、複製聲音、產生視訊、產生影像等。

GitHub MCP 伺服器是一個模型上下文協定 (MCP) 提供與 GitHub API 無縫整合的伺服器,為開發人員和工具提供自動化和互動功能。提供一鍵安裝。完成後,切換代理模式,伺服器將會自動啟動。
FramePack 是一種新的視頻擴散設計,用壓縮上下文令工作量不會隨著影片的長度而增加,只需一張圖片,就可以令你的 6GB vRAM 的電腦透過 13B 模型生成每秒 30 格影片的 60 秒影片。而用 RTX 4090 的話,最快速度為每格 1.5 秒。
作者 Lvmin Zhang
Llama 4 Scout 是一個擁有 170 億個活躍參數和 16 個 MOE 的混合專家模型。它被認為是目前同類型最優秀的多模態模型,比前幾代的 Llama 模型更強大。新模型可以用單張 NVIDIA H100 GPU 運作。佢擁有業介領先的 1000 萬 tokens 上下文窗口,並且在廣泛使用的基準測試表現都優勝過 Gemma 3、Gemini 2.0 Flash-Lite 和 Mistral 3.1。它在預訓練和後訓練的過程都用了 256K 的上下文長度。
另一個模型 Maverick 同樣是一個擁有 170 億個活躍參數的模型,但它擁有 128 個 MOE 的混合專家模型。基準測試擊敗了 GPT-4o 和 Gemini 2.0 Flash,而在圖像方面亦表現相當出色,能夠將提示詞同埋相關的視覺概念對齊,將模型的回應鎖定到圖像中的特定區域。兩個模型都有獨特的活躍參數模式,能夠節省一半資源。令開發同應用的價格更低。

WhatsApp MCP 可利用您的個人 WhatsApp 帳戶進行搜索訊息、聯絡人及群組,並能向個人或群組發送訊息。所有訊息會自動儲存到本地的 S Q Lite 資料庫,確保私隱同控制權。用戶只需要掃描 QR code 就可以驗證帳戶並開始使用。WhatsApp MCP 整合了 Claude Desktop,利用語言模型來增強訊息的處理功能,十分適合需要高效管理 WhatsApp 通訊的用戶。

InfiniteYou 的獨特之處在於其強大的身份保留技術!透過核心組件 InfuseNet,即使在生成全新場景或是不同風格的相片,也能精準保留相片中的人物特徵。您可以僅以文字描述,就能讓同一人物出現在不同情境、穿著不同的衫,甚至呈現不同的風格。它亦支援 ControlNet 和 LoRA 的進階控制,令創意揮灑的同時,也能精細調整生成結果,直至符合您需要的獨特內容!(ByteDance)

LHM (Large Animatable Human Reconstruction Model) 是一個高效及高質量的 3D 人體重建方案模型,能夠在幾秒鐘內生成影片。模型利用了多模態的 Transformer 架構,以注意力機制,對人體特徵和影像特徵進行編碼,能夠詳細保存服裝的幾何形狀和紋理。為了進一步增強細節,LHM 提出了一種針對頭部特徵的金字塔型編碼方案,能夠生成頭部區域的多種特徵。(阿里巴巴)
